Adaptive multi-chart and multiresolution mesh representation
نویسندگان
چکیده
In this paper, we present an adaptive multi-chart and multiresolution mesh representation suitable for both the CPU and the GPU. We build our representation by simplifying a dense-polygon mesh to a base mesh and storing the original geometry in an atlas structure. For both simplification and resolution control, we extend a hierarchical method based on stellar operators to the GPU context. During simplification, we compute local parametrizations to generate charts and an atlas structure to be used later in multiresolution management. Unlike previous approaches, we employ the simplified mesh as our base domain in a novel atlas descriptor combined with a specialized halfedge data structure, achieving superior geometric accuracy while adding a low additional storage. Finally, we show that our mesh representation can be used to adaptively control the mesh resolution in the CPU and the GPU at the same time in a broad range of applications, from mesh editing to rendering.
منابع مشابه
An Adaptive Multiresolution Mesh Representation for CPU-GPU Coupled Computation
In this paper, we present an adaptive multiresolution mesh representation exploring the computational differences of the CPU and the GPU. We build our representation considering a dense-polygon mesh simplified to a base mesh which stores the original geometry by means of an atlas structure. For both simplification and refinement processes, we present a hierarchical method based on stellar opera...
متن کاملMultiple multiresolution representation of functions and calculus for fast computation
We describe the mathematical representations, data structure and the implementation of the numerical calculus of functions in the software environment multiresolution analysis environment for scientific simulations, MADNESS. In MADNESS, each smooth function is represented using an adaptive pseudo-spectral expansion using the multiwavelet basis to a arbitrary but finite precision. This is an ext...
متن کاملREVERSE LOOP SUBDIVISION FOR GEOMETRY AND TEXTURES
Reverse subdivision aims at constructing a coarser representation of an object given by a fine polygon mesh. In this paper, we first derive a mask for reverse Loop subdivision that can be applied to both regular and extraordinary vertices. The mask is parameterized, and thus can also be used in reversing variants of Loop subdivision, such as those proposed by Warren and Litke. We apply this mas...
متن کاملAdaptive Mesh Extraction using Simplification and Refinement
This work presents a method for multiresolution mesh extraction with important mathematical properties. The generated mesh represents a regular surface from 3D Euclidian space. The input surface may be specified either implicitly or directly as a volumetric object. The method applies simplification operations to obtain a low resolution initial mesh and applies refinement operations to obtain a ...
متن کاملn-Dimensional multiresolution representation of subdivision meshes with arbitrary topology
We present a new model for the representation of n-dimensional multiresolution meshes. It provides a robust topological representation of arbitrary meshes that are combined in closely interlinked levels of resolution. The proposed combinatorial model is formalized through the mathematical model of combinatorial maps allowing us to give a general formulation, in any dimensions, of the topologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Graphics
دوره 38 شماره
صفحات -
تاریخ انتشار 2014